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Abstract 

Freeze-form Extrusion Fabrication (FEF) is an environmentally friendly solid freeform 

fabrication method that uses aqueous pastes to fabricate ceramic-based components.  The process 

uses only small quantities (2 to 4 vol.%) of organic binder. Using the FEF process, 3-D ceramic 

components have been fabricated from aluminum oxide (Al2O3) by extrusion deposition of Al2O3 

paste in a layer-by-layer manner utilizing a 3-D gantry controlled by a computer using Labview 

software.  Sintered samples have achieved 98% of their theoretical density, demonstrating the 

feasibility of the FEF process.  
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I. Introduction 
 

 Fabricating ceramic materials into usable 3-D components is typically a complicated, 

costly, and time-consuming process.  In most cases, the processing is powder-related.  Only in a 

few circumstances, ways such as fuse casting and hot spraying are used to fabricate fully dense 

ceramic materials, but these techniques require an extremely high temperature to melt the 

ceramic.  More commonly, 3-D ceramic components are produced by casting the materials into a 

prefabricated mold designed to mimic the shape of the final product.  The costs and 

manufacturing period associated with mold design and processing increase significantly with the 

complexity of the component.  Furthermore, many 3-D components cannot be produced by a 

mold-based fabrication process, such as components with internal passages and cavities.   

 In recent years, many solid freeform fabrication (SFF) techniques have been developed 

and used to fabricate complex, 3-D ceramic components.  The most highly developed SFF 

technologies include the following:  Fused Deposition of Ceramics (FDC) [Rangarajan, Lous, 

Bandyopadhyay, Bellini, and Danforth], Fused Deposition Modeling (FDM) [Crump], Extrusion 

Freeform Fabrication (EFF) [Hilmas and Wang], slurry and binder-based 3-D Printing (3DP) 

[Cima], Chemical Liquid Deposition (CLD) [He], Selected Laser Sintering (SLS) [Kruth], 

Selected Laser Melting (SLM) [Kruth and Klocke], Shape Deposition Manufacturing (SDM) 

[Cooper, Stampfl], and Robocasting [Cesarano].  All of these techniques are layer-by-layer 

addition techniques.  Some of them are direct fabrication techniques, while others involve 

indirect fabrication and rely on building a mold or 3-D tooling prior to forming the final 

component.  Each technique has its own advantages.  Some of these techniques can achieve high 

final density, such as EFF, FDC, CLD, SDM, SLS, and Robocasting, because of the high green 
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density and separat sintering process.  Some of these techniques can achieve smooth surface 

finish, including Slurry-3DP, CLD, SLS, SLM, SDM, and Robocasting.  Most of them are 

organic binder or solvent based, and are thus not friendly with the environment.  However, the 

SLM and SDM techniques are considered to be environmental friendly.   Generally speaking, the 

accuracy and fabrication efficiency are two trade-offs in the layer-by-layer manufacturing of 3-D 

components.  A higher accuracy is usually associated with a lower efficiency.     

 Freeze-form Extrusion Fabrication (FEF) is a layer-by-layer extrusion manufacturing 

process developed by extending the concept of the Rapid Freeze Prototyping (RFP) [Sui, Bryant, 

Leu].  An aqueous paste in the FEF process is extruded from a ram extruder, and the extruded 

material immediately deposits on a working surface that can be moved in a plane.  The surface is 

set to a temperature designed to freeze the material as it is deposited.  Due to the temperature 

being lower than the paste freezing temperature, the extruded material freezes immediately after 

extrusion to form a solid.  After the first layer is finished, the z-axis moves up a distance that is 

equal to the thickness of each layer.  In order to precisely deposit extruded material, the extrusion 

rate needs to be matched with the 2-D table speed.  The nozzle follows a contour that is 

generated by a computer according to a CAD model.  The computer slices a complex 3-D shape 

into 2-D slices.  The thickness of each slice is coordinated with the thickness of each fabrication 

layer.  The stacked 2-D slices form the final 3-D part.  This technique has some unique 

advantages, including the ability to fabricate parts directly from paste, as well as high sintered 

density and environmental friendliness. 

This paper discusses on the development of the FEF process and its use to fabricate 3-D 

ceramic components.  The current study uses aluminum oxide (Al2O3), one of the most common 

high-temperature structural ceramic materials.  Al2O3 is lightweight and inexpensive, and it 
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exhibits high strength and hardness till elevated temperatures (>1500 °C) in an oxidizing 

atmosphere, making it one of the most important refractory ceramic insulator materials.   

 

II. Experimental Procedures 

 The raw materials used in this study included Al2O3 powder (A-16SG, 0.4 µm particle 

size, Mineral and Pigment Solutions, Inc., South Plainfield, NJ), a neutral binder (Aquazol 50, 

5000 MW, ISP Technologies, Inc., Wayne, NJ), and a lubricant or plasticizer (Polyethylene 

glycol, PEG-400, Aldrich, St. Louis, MO).  Glycerol (Aldrich, St. Louis, MO) was added to 

assist in avoiding the formation of large, elongated ice crystals during the freezing process.  

Darvan C (R. T. Vanderbilt, Norwalk, CT) was used as a dispersant to assist in achieving 

uniform mixing.  Distilled water was used as the medium, and a 5-10% HNO3 water solution was 

used to adjust the pH value as needed.   

 Figure 1 shows a flowchart of the paste preparation process.   The solids loading used for 

the current study was 50-55 vol.% Al2O3.  The dispersant content was from 1-2 wt.% of the 

weight of the ceramic solids.  The binder content was 2-4 vol.% and was added after ball milling 

in a vacuum mixer (Whip Mix, Model F, Louisville, KY).  6 vol.% of glycerol was added to 

optimize water crystallization.  PEG-400 was added to a content of 1 vol.%.  Finally, the paste’s 

viscosity was adjusted by changing the paste pH value from a range of 12-14 to a range of 8.5-

9.5.  The viscosity check was the final step to ensure the paste’s extrusion behavior.  To prevent 

evaporation of water in the paste, the batched paste was collected immediately after vacuum 

mixing and sealed in 60 cm3 syringes.  The paste’s shelf time was about two months. However, 

aged paste was readily rebatched, and its pH value could be readjusted.   
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Figure 1:  Flowchart for the paste preparation process. 
 

 Sample fabrication was carried out on the FEF 3-D deposition system that was controlled 

by a computer using Labview software from National Instruments, Inc. (Austin, TX).  The 3-D 

shapes programmed specifically for this 3-D deposition system included rings, cylinders, thin 

wall polygons, solid cones, hollow cones, and ogive hollow cones.  Blending was used in the 

motions for some programs to minimize the effects of hard stops, such as material buildup at the 

hard stop position because the extrusion could not be stopped immediately when the table motion 

was stopped in the current FEF process.  Figure 2 shows a photo of the FEF 3-D deposition 

system including the extrusion device and the table. 

 

Mixing Al2O3, PEG, Darvan C, 
Glycerol, and de-ionized water 

Ball mill for 24 hours 

Vacuum binder mixing 

pH value adjustment 

Paste collection 

Viscosity check 

Yes 

No 
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Figure 2: The FEF 3–D extrusion-deposition system. 

 Al2O3 samples fabricated using the FEF process were freeze-dried in a chamber at –16 °C 

and ∼ 1 Pa vacuum for three days.  The freeze-dried samples still retained a significant amount of 

water.  The samples required additional drying at room temperature for 24 – 48 hours depending 

on the sample size.  After drying, the samples were pyrolyzed to remove the remaining organics 

using a 0.5 °C/min ramp up to 600 °C for two hours, followed by cooling at 10 °C/min to room 

temperature.  The samples were then sintered at 1550 °C for two hours using a heating rate of 5 

°C/min and a cooling rate of 10 °C/min.  The density of the sintered samples was measured using 

the Archimedes method.  Samples were polished to a 0.25 µm diamond finish for SEM 

investigation.  Sample uniformity, microstructure, and pore distribution were analyzed using 

scanning electron microscopy (SEM) techniques (Jeol 330, Peabody, MA).   
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III. Results and Discussion 
 

Several pastes were prepared in order to study the effect of dispersant and binder 

concentrations on viscosity.  As a neutral binder, Aquazol 50 does not change the slurry/paste pH 

value, so the effects of the dispersant content were tested prior to binder additions.  The effect of 

binder content on the viscosity of the paste was performed on batches containing 2 vol.% 

dispersant.  Binder content was varied from 1 to 5 vol.% with a 1 vol.% resolution.  The test 

results (Figure 3) showed that the viscosity decreases as the dispersant concentration increases 

when the content is less than 2 vol.%.  However, the viscosity increases with dispersant content 

at values greater than 2 vol.%.  The results also showed that the pastes exhibited a strong shear 

thinning behavior for all ranges of dispersant content.  Viscosity was found to increase with 

binder content (Figure 4) as expected.  This effect was more pronounced in the low shear rate 

region (<10/s), compared with the higher shear rate region (>10/s).  Binder additions of 2 - 4 

vol.% were adopted in the paste preparation procedure because these pastes exhibited a low 

enough viscosity (about 50 Pa·s) in the high shear rate range determined to be extrudable at low 

pressures, while having a high enough viscosity (about 200 Pa·s) in the low shear rate range to 

quickly become rigid and provide green strength after extrusion.  The paste viscosity was 

controllable through adjustment of the pH value by adding 0.5 - 0.8 vol.% of a 5 - 8% nitric acid 

water solution.  Adjusting the pH is the most effective method for developing a paste with the 

proper viscosity (about 50 Pa·s) for extrusion. 



8 

10 20 30 40 50 60 70

0

20

40

60

80

100

0.5
1.0

1.5
2.0

3.0

 

 

 

Shear Rate (s-1)

V
is

co
si

ty
 (P

a.
s)

Disp
ers

an
t C

on
ten

t (
vo

l.%
)

 

Figure 3:  Effects of dispersant content on the viscosity of paste under various shear rates. 
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Figure 4:  Effect of binder content on paste viscosity. 

Extrusion deposition prototyping processes allow for some control over the cross-

sectional shape of the extrudate.  The ideal shape of the extrudate is a slab rather than a round 
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filament.  A slab shape has the advantage of being able to provide increased adhesion between 

the currently depositing material and the material in previously deposited layers.  A slab-shaped 

cross section can be achieved by flattening the extruded material with the nozzle tip as the 

material is extruded.  Figure 5 consists of schematic drawings showing the dimensions of the 

nozzle, extrudate, and extrusion parameters.  Assuming the extrudate will not change shape by 

gravity or the surface tension between the extrudate and the substrate, the relationship between 

the dimensions of the desired slab, nozzle size, and deposition parameters can be expresses as 

equations (1) and (2).  

 

Figure 5: Schematic drawings showing the dimensions of the nozzle and slab shape depositions  
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DI: inside diameter of the nozzle 

DO: outside diameter of the nozzle 

H: nozzle height 

 

When H ≥ DI and νT  ≥ νE, the extrudate should form a cylindrical shape.  Otherwise, the 

extrudate will form a slab shape, with the width and the shape depending on H,  νT, and νE.  The 

ideal shape of the slab should favor Equation (2).  When the extrusion speed is too high as shown 

in the following equation 

2

24

I

O
TE D

HHD
π

π
υυ

+
>                                                      (4) 

the materials will be deposited with a height of Hth (the thread height) that is larger than the 

nozzle height H. 

The actual deposition is related to many other factors.  The most significant one is that 

the paste is a non-Newtonian fluid, with the paste viscosity being related to the shear rate during 

processing.  Because the paste is a shear thinning paste and extrusion is a high shear rate process, 

the paste comes out of the nozzle with a relatively low viscosity and can change its shape due to 

gravity, surface tension, or a combination of the two.  Surface tension will tend to cause the 

extrudate to have a rounded shape, and it also affects how well the extrudate wets the substrate 

and previously extruded layers.  Based on single thread deposition tests (Table I), complications 

from the latter phenomenon can be observed.  Figure 6 shows the cross sections of threads 

produced during single thread deposition studies with different nozzle sizes, extrusion rates, 

standoff distances, and deposition table velocities.  Figure 6 also shows the schematic drawings 

of cross-section shapes that are analytically predicted using the data listed in Table I.  In the 
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predictions, the gravity and surface tension issues between the extrudate and the substrate have 

been ignored.  From thread 1 (Figure 6), it can be seen that the distance between the nozzle and 

the substrate is much smaller than the height of the extrudate.  This is caused by the higher 

extrusion rate and lower table velocity.  The material could not be distributed immediately after 

extrusion.  Material that is “over-extruded” beyond the area below the nozzle, will round up due 

to surface tension.  The contacting angle between the extrudate and the substrate is determined 

by the wetting behavior of the paste with the substrate and the paste viscosity.  Good wetting 

lowers the contact angle, while a higher viscosity assists in maintaining the shape of the 

extrudate.  The paste viscosity, however, is not constant but changes as the extrusion rate 

changes, resulting in a lower viscosity extrudate at higher extrusion rates.  Thus, while the 

wetting behavior of the extrudate is almost constant at fixed temperatures, the contact angle will 

decrease as the extrusion rate increases.  As an example, extrudates 4 and 5 (Figure 6) have 

extrusion rates that are all higher than extrudate 1, so the viscosity is lower than that of extrudate 

1, providing a lower contact angle.  While all of the extrudates should be symmetric in shape, 

sometimes the symmetry may changed due to unpredictable reasons.  For example, material 

sticking on the nozzle will change the shape to a non-symmetrical shape, and the deposited 

material will be similar to extrudates 4 and 5.  

Table I. Single thread deposition test results 

Test DI (µm) DO (µm) νT (mm/s) H (µm) νE (mm/s) νEK (mm/s) A* (mm2) 

1 190.00 420.00 10.00 95 61.61 37.18 0.1746 
2 190.00 420.00 30.00 285 100.82 15.58 0.0952 
3 250.00 515.00 20.00 375 84.12 13.60 0.2063 
4 250.00 515.00 40.00 313 414.11 85.34 0.5079 
5 580.00 910.00 10.00 290 40.14 32.14 1.0600 
6 580.00 910.00 40.00 725 40.89 10.07 0.2700 

              *A: Cross-section area 
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Figure 6: Enlarged optical images showing single-thread cross sections and the schematic 
drawings showing the predicted cross sections, respectively. 

 

 

 

Figure 7.  Schematic drawings showing the relationship of offset amount and deposition method. 

 

A recursive offset type of algorithm was implemented in building the hollow cone and 

ogive hollow cone geometries.  The recursive offset algorithm moves in a trajectory that is 

defined by the part boundaries.  More in-depth information about the recursive offset algorithm 

can be found in the publications by Eiamsa-ard and Hebbar [Eiamsa-ard and Hebbar].  The 

maximum amount of next-layer offset depends on the properties of the extruded materials.  The 

relative offset amount can be expressed as ∆X/H, where ∆X is the offset value and H is the layer 

∆x1
∆x2 

H1 H2

1           2           3                  4                            5                     6  
1mm 
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thickness.  Figure 7 contains schematic drawings showing the relationship of the relative offset 

amount for different extrudate shapes.   It can be seen that the slab shape cross section can have a 

larger amount of offset because ∆X2/H2 > ∆X1/H1 for the extrudates using the same size nozzle. 

Thin-walled polygon components were fabricated to demonstrate the feasibility of the 

FEF process for making fine structures (Figure 8).  In Figure 8, the left image shows a polygon 

fabricated using a 580 µm diameter nozzle, and the right shows a polygon fabricated using a 250 

µm diameter nozzle.  In the current study, the FEF setup was not housed in a freezer due to 

limitations on the size of available freezers.  Thus, the components in Figure 8 were built at room 

temperature.  Based on the fabrication of thin-walled components, the pastes developed in this 

study possessed stable extrusion behavior and high green strength.  The single threads used to 

produce the polygons were readily stacked as high as 20 mm without collapsing.  In another 

experiment, a 50 mm diameter single-walled cylinder was fabricated.  The single-walled cylinder 

did not collapse when the height reached the limit of the current 3-D gantry system (135 mm).    

 

 

Figure 8. Optical images showing single-walled polygon shapes fabricated by FEF; the left 
image used a 580 µm diameter nozzle; the right image used a 250 µm diameter nozzle. 
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Successful freeze-drying of highly loaded ceramic components depends on many factors.  

First, it depends on the vapor pressure of water in the ceramic green body at its freezing 

temperature.  Second, it depends on the pressure of the surrounding atmosphere.  The rate of 

drying also depends on the size, geometry, and surface area of the sample.  Two Al2O3 cone 

samples were produced for preliminary freeze-drying tests.  The samples were taken directly 

from the FEF deposition table, weighed, and placed in the freeze dryer for two days at -16 °C 

under a mechanical vacuum (∼1Pa).  

Table 2:  Freeze-drying results 

Sample No. Wet Weight (g) Dry Weight (g) Weight Loss (%) 
1 2.80 2.66 5.00 
2 2.41 2.26 6.22 

 

From the freeze-drying results (Table 2), it can be found that the mechanical vacuum 

pump is not efficient for freeze-drying.  Only about 30% of the water in the samples was 

removed.  However, once the samples were partially dried, they possessed enough strength to be 

dried at ambient and/or elevated temperatures outside of the freeze drier.  After drying, the 

samples were ready for binder removal.  Because the pastes in this process contained a minimum 

of high molecular weight organic binders (2 - 4 vol.%), the binder removal process was 

relatively straightforward and could be accomplished with a rapid-heating cycle.     

Several sintered ogive hollow cones and thin walled polygon components (Figures 9 and 

10) were fabricated to further demonstrate the FEF process in producing sintered ceramic 

components.  The average Archimedes density for the ogive hollow cones was 95% of their 

theoretical density.  The average Archimedes density for the polygon components was 98% of 
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their theoretical density.  This indicates that the paste’s solids loading was high enough to 

achieve almost full density after sintering. 

 

 

Figure 9:  Optical images showing the side and bottom views of sintered Al2O3 ogive hollow 
cones fabricated by FEF using 580 µm diameter nozzles. 

 

 

Figure 10: Optical images showing sintered thin walled polygon components produced from 
Al2O3.  Part “A” was fabricated with a 580 µm diameter nozzle and “B” was fabricated with a 

250 µm diameter nozzle. 

 

SEM images from the top and bottom of a hollow cone (Figure 11) clearly indicate the 

density difference in different regions of the FEF components.  At the top of the cone, the 

density is relatively high (97% of its theoretical density), containing only small pores having a 

A B
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uniform distribution.  However, at the bottom, the density was markedly lower (92% of its 

theoretical density), and several large voids were distributed throughout the area following a 

specific pattern.  According to the void distribution pattern, it is surmised that under-filling of the 

extruded filaments occurred in this area during the deposition.  The under-filling was caused by a 

mismatch of X-Y table speed with the extrusion rate.   

 

                        
Figure 11:  SEM images taken from the top and bottom of a sectioned Al2O3 hollow cone 

produced using FEF.  A: low magnification; B high magnification. 

 

According to Sofie’s work [Sofie], 6 vol.% of glycerol will effectively optimize water 

crystallization to avoid large elongated crystal formation and will not significantly depress the 

freezing point.  From the sintered part microstructure investigation, no evidence could be found 

on forming of large and elongated ice crystals.  This demonstrated that the 6 vol.% glycerol 

addition effectively controlled the water crystallization behavior, forming fine and equiaxed  ice 

crystals. 

 

A

A

A-A 
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IV. Conclusions 

An effective, time-saving, and environmentally friendly solid freeform fabrication 

technique called Freeze-form Extrusion Fabrication (FEF) is being developed to utilize aqueous 

ceramic pastes as the building material.  This study showed the successful fabrication of thin-

walled polygon shapes and 3-D geometries with this novel rapid prototyping technique.  

Aqueous pastes consisting of a 50-55 vol.% solids loading of Al2O3 ceramic powder with a 

minimum of organic binder content showed favorable extrusion behavior.  The dispersant, binder 

content, and pH value strongly affected the paste viscosity and provided control over the paste 

extrusion behavior. The developed FEF system was described, and major process parameters 

defined.  The ability of the process to build sloped features without the use of support material 

was verified through the fabrication of hollow cones. 
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